30 research outputs found

    Edge-Stable Equimatchable Graphs

    Full text link
    A graph GG is \emph{equimatchable} if every maximal matching of GG has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph GG \emph{edge-stable} if GeG\setminus {e}, that is the graph obtained by the removal of edge ee from GG, is also equimatchable for any eE(G)e \in E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m))O(\min(n^{3.376}, n^{1.5}m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions

    On Almost Well-Covered Graphs of Girth at Least 6

    Full text link
    We consider a relaxation of the concept of well-covered graphs, which are graphs with all maximal independent sets of the same size. The extent to which a graph fails to be well-covered can be measured by its independence gap, defined as the difference between the maximum and minimum sizes of a maximal independent set in GG. While the well-covered graphs are exactly the graphs of independence gap zero, we investigate in this paper graphs of independence gap one, which we also call almost well-covered graphs. Previous works due to Finbow et al. (1994) and Barbosa et al. (2013) have implications for the structure of almost well-covered graphs of girth at least kk for k{7,8}k\in \{7,8\}. We focus on almost well-covered graphs of girth at least 66. We show that every graph in this class has at most two vertices each of which is adjacent to exactly 22 leaves. We give efficiently testable characterizations of almost well-covered graphs of girth at least 66 having exactly one or exactly two such vertices. Building on these results, we develop a polynomial-time recognition algorithm of almost well-covered {C3,C4,C5,C7}\{C_3,C_4,C_5,C_7\}-free graphs

    Graphs of Edge-Intersecting Non-Splitting Paths in a Tree: Representations of Holes-Part II

    Full text link
    Given a tree and a set P of non-trivial simple paths on it, VPT(P) is the VPT graph (i.e. the vertex intersection graph) of the paths P, and EPT(P) is the EPT graph (i.e. the edge intersection graph) of P. These graphs have been extensively studied in the literature. Given two (edge) intersecting paths in a graph, their split vertices is the set of vertices having degree at least 3 in their union. A pair of (edge) intersecting paths is termed non-splitting if they do not have split vertices (namely if their union is a path). We define the graph ENPT(P) of edge intersecting non-splitting paths of a tree, termed the ENPT graph, as the graph having a vertex for each path in P, and an edge between every pair of vertices representing two paths that are both edge-intersecting and non-splitting. A graph G is an ENPT graph if there is a tree T and a set of paths P of T such that G=ENPT(P), and we say that is a representation of G. Our goal is to characterize the representation of chordless ENPT cycles (holes). To achieve this goal, we first assume that the EPT graph induced by the vertices of an ENPT hole is given. In [2] we introduce three assumptions (P1), (P2), (P3) defined on EPT, ENPT pairs of graphs. In the same study, we define two problems HamiltonianPairRec, P3-HamiltonianPairRec and characterize the representations of ENPT holes that satisfy (P1), (P2), (P3). In this work, we continue our work by relaxing these three assumptions one by one. We characterize the representations of ENPT holes satisfying (P3) by providing a polynomial-time algorithm to solve P3-HamiltonianPairRec. We also show that there does not exist a polynomial-time algorithm to solve HamiltonianPairRec, unless P=NP

    On the Maximum Cardinality Cut Problem in Proper Interval Graphs and Related Graph Classes

    Get PDF
    Although it has been claimed in two different papers that the maximum cardinality cut problem is polynomial-time solvable for proper interval graphs, both of them turned out to be erroneous. In this paper, we give FPT algorithms for the maximum cardinality cut problem in classes of graphs containing proper interval graphs and mixed unit interval graphs when parameterized by some new parameters that we introduce. These new parameters are related to a generalization of the so-called bubble representations of proper interval graphs and mixed unit interval graphs and to clique-width decompositions
    corecore